
1.  Introduction
Globally, snow loss is causing cascading impacts to soil storage, evapotranspiration, streamflow and groundwater 
recharge; sediment transport and hazards; aquatic and terrestrial ecology; as well as human water use for public 

Abstract  Continued climate warming is reducing seasonal snowpacks in the western United States, where 
>50% of historical water supplies were snowmelt-derived. In the Upper Colorado River Basin, declining snow 
water equivalent (SWE) and altered surface water input (SWI, rainfall and snowmelt available to enter the 
soil) timing and magnitude affect streamflow generation and water availability. To adapt effectively to future 
conditions, we need to understand current spatiotemporal distributions of SWE and SWI and how they may 
change in future decades. We developed 100-m SnowModel simulations for water years 2001–2013 and two 
scenarios: control (CTL) and pseudo-global-warming (PGW). The PGW fraction of precipitation falling as 
snow was lower relative to CTL, except for November–April at high elevations. PGW peak SWE was lower 
for low (−45%) and mid elevations (−14%), while the date of peak SWE was uniformly earlier in the year for 
all elevations (17–23 days). Currently unmonitored high elevation snow represented a greater fraction of total 
PGW SWE. PGW peak daily SWI was higher for all elevations (30%–42%), while the dates of SWI peaks and 
centroids were earlier in the year for all elevations under PGW. PGW displayed elevated winter SWI, lower 
summer SWI, and changes in spring SWI timing were elevation-dependent. Although PGW peak SWI was 
elevated and earlier compared to CTL, SWI was more evenly distributed throughout the year for PGW. These 
simulated shifts in the timing and magnitude of SWE and SWI have broad implications for water management 
in dry, snow-dominated regions.

Plain Language Summary  Snowpack water storage has historically functioned as a reliable 
extension of manmade reservoir storage. Loss of this storage has consequences for water resource management, 
ecological communities, and natural hazards including wildfire. We modeled snow accumulation and melt at 
high spatial resolution in the Upper Colorado River Basin to assess patterns in the timing and magnitude of 
snow storage and snowmelt for historical and future scenarios. We analyze these patterns in relation to existing 
snow monitoring station coverage, and ask how this coverage may need to change in future decades to better 
represent water availability. Our results indicate widespread future snow storage losses at lower elevations, 
but limited change at higher elevations that will likely remain conducive to seasonal snow accumulation and 
melt for decades to come. Peak snow storage and peak snowmelt occurred earlier for all elevations in future 
years, with increased peak surface water input noted at all elevations. A greater fraction of future snow storage 
will be in currently unmonitored high elevations. Projected elevation dependent changes from this study have 
implications for other dry, snow dominated regions, and additional work is needed to evaluate combined effects 
of widespread snow loss and earlier, flashier input on coordinated water management.
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Key Points:
•	 �Projections show lower peak snow 

water equivalent (SWE) below 
3,000 m and earlier peak SWE, peak 
surface water input (SWI) at all 
elevations

•	 �Greater future peak SWI and reduced 
annual snow-derived SWI for all 
elevations, with a more even SWI 
distribution throughout the year

•	 �A greater fraction of future SWE will 
be in high elevations that are currently 
unmonitored
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supply, irrigation, mining, hydropower, agriculture, and recreation (e.g., Huss et al., 2017). Continued global 
warming is reducing seasonal snowpacks in the western United States (Mote et  al.,  2018), where a majority 
of the region's water supply has historically been generated by snowmelt, especially in semi-arid basins (Li 
et al., 2017). These changes are modifying the timing and magnitude of streamflow, with (a) mid-winter melt 
occurring more frequently, (b) declines in peak snow water equivalent (SWE) (Musselman et al., 2021), and (c) 
earlier streamflow timing in snowmelt driven areas (Dudley et al., 2017; Stewart et al., 2005). Across the western 
United States, SWE declines of ∼25% are expected by the middle of the 21st century, and seasonal snowpacks are 
likely to be replaced by low-to-no snow conditions at low and mid elevations (Fyfe et al., 2017; Siirila-Woodburn 
et al., 2021).

Snowmelt in the Upper Colorado River Basin (UCRB) generates as much as 92% of the streamflow for the larger 
Colorado River Basin, which supports over 40 million people and irrigates 5.5 million acres across seven western 
U.S. states (Butler et al., 2015; Lukas & Payton, 2020). Thus, better understanding the present spatiotemporal 
distribution of SWE and the associated hydrologic response to global warming in this region is critical to prepare 
for future adjustments to water resource management. Existing allocations between upper and lower basin states 
may be unrealizable with continued snow loss and heightened interannual climatic variability, especially for 
persistent drought periods (Adler, 2008; Udall & Overpeck, 2017; Woodhouse et al., 2006). Prior work in the 
Colorado River Basin has shown annual streamflow to be most sensitive to warming during the warm season as 
compared to other seasons for the last several decades (Ban & Lettenmaier, 2022), with annual discharge decreas-
ing 9.3% per °C of warming over the period 1913–2017 (Milly & Dunne, 2020). Other recent studies report that 
increases of temperature of 1–2°C in the Colorado River Basin without changes in precipitation could result in 
streamflow reductions of 10%–20% (Christensen et al., 2004; Christensen & Lettenmaier, 2007; McCabe and 
Wolock, 2007, 2011). Projections using regional climate models indicate reduced, earlier peak SWE in the UCRB 
(Rasmussen, Baker et al., 2011) and increases in streamflow for the 2030s followed by decreases for the 2080s 
compared to present, with potential streamflow increases insufficient to meet growing water demand (Miller 
et al., 2021).

Accurately characterizing mountain precipitation and SWE remains a key task for responding to projected 
streamflow reductions and intensified droughts (Kim et al., 2021). This characterization has been a challenge 
because most global climate models (GCMs) or mesoscale climate models produce simulations at coarse spatial 
resolutions and are unable to represent complex orographic precipitation patterns and small-scale snow processes 
that are important in mountainous regions such as the UCRB, resulting in substantial biases (Salzmann & 
Mearns, 2012). Fine spatial scale is crucial for regional predictions of future hydroclimate (Ikeda et al., 2021; 
Wrzesien & Pavelsky,  2020) to accurately represent the influence of topographic complexity on orographic 
precipitation patterns and snow process dynamics (Liston, 2004; López-Moreno et al., 2013; Musselman, Clark, 
et al., 2017, Musselmann, Molotch, & Margulis et al., 2017; Rasmussen, Baker et al., 2011). In this study, we 
extend prior mesoscale snow modeling work for areas of the western United States (e.g., Ikeda et  al.,  2021; 
Li  et al., 2017; Musselman, Clark, et al., 2017) to a finer resolution by using process-based snow modeling (Snow-
Model; Liston & Elder, 2006a) at 100-m (m) spatial resolution driven with fine-resolution convective-permitting 
and orography-resolving Weather Research and Forecasting Model (WRF) simulations for a control (CTL) and 
a pseudo-global-warming (PGW) scenario. The PGW method (Liu et al., 2017; Rasmussen, Baker et al., 2011, 
Rasmussen, Liu et al., 2011; Sato et al., 2007; Schär et al., 1996) is best used to ask the question, “what will 
today's weather look like in a future climate state.” The difference between two 30-year monthly mean conditions 
in a future (2071–2100) and current (1976–2005) are applied to reanalysis data used to drive the mesoscale model 
that allows for historical events and patterns (i.e., extreme storm events, dry vs. wet seasons) to be directly stud-
ied in contrast to other methods that dynamically downscale from GCMs. The approach well characterizes the 
thermodynamic aspects of climate change, but does not represent large-scale changes in atmospheric circulation. 
However, sub-monthly mesoscale variability is well captured and allows for significant improvements in the 
representation of precipitating systems in regions of complex terrain (Rasmussen, Baker et al., 2011, Rasmussen 
& Liu, 2017).

This study optimally combines two cutting-edge models at a fine spatial scale that better captures the effects 
of complex topography and elevation gradients on snow variability and snow processes than prior studies at 
4-km or coarser resolutions, and it allows us to investigate how snowpack processes change with climate warm-
ing without introducing uncertainty inherent to other methods that include potential changes in storm tracks. 
Additionally, in this study we analyze surface water input (SWI), which is the sum of rainfall and snowmelt 
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available to enter the soil, to characterize the effects of a changing snowpack on the hydrologic cycle. Prior stud-
ies at plot and catchment scale have demonstrated linkages between SWI and observed and modeled streamflow 
(Hammond et al., 2019; Kiewiet et al., 2022; Kormos et al., 2014), and the use of SWI in this study enables 
linking snow changes to hydrologic effects not fully captured in prior studies using metrics including snowfall 
fraction (Berghuijs et al., 2014) and snowmelt rate (Barnhart et al., 2016).

With the aim to reduce uncertainty in present and future spatiotemporal distributions of SWE and SWI, we ask 
our primary study question (a) how will SWE change under a future warmer climate by elevation, and how might 
this affect future water availability via changes to the timing and magnitude of SWI? (Sections 3.3, 3.4, 4.1). 
Using PGW as an indicator of potential future conditions associated with the thermodynamic aspects of climate 
change, we hypothesize future SWI will occur earlier and at lower magnitude for mid to low elevations coincident 
with decreases in SWE (Barnhart et al., 2016; Musselmann, Molotch, & Margulis et al., 2017), but peak SWE 
may increase at times for high elevations where precipitation is expected to increase; temperatures during late 
fall, winter and early spring will still be conducive for snowfall (e.g., Musselman, Clark, et al., 2017). Despite 
similar or elevated SWE at high elevations, we hypothesize the timing of future SWI will be earlier in the year 
than for historical estimates (Musselmann, Molotch, & Margulis et al., 2017). To place these results in context of 
current snow monitoring locations following in depth analysis of the present and future distributions of SWE and 
SWI, we ask a secondary study question (b) how well do current snow observation stations represent the spatial 
distribution of SWE and SWI, and how might these networks need to change to continue to provide predictive 
information for future water availability? (Section 4.2). We hypothesize future snowpacks will be more limited to 
higher elevations than at present (Ikeda et al., 2021), and that low to mid elevations will provide a smaller snow-
melt contribution to streamflow despite substantial present-day snowmelt contribution given their large spatial 
footprint (Hammond et al., 2018; Harrison et al., 2021).

2.  Methods
To answer our study questions, we selected the Colorado portion of the UCRB (Section 2.1), implemented CTL 
and PGW SnowModel simulations (Section 2.2), and performed a multi-source model evaluation using station 
and remotely sensed data (Section 2.3). We then aggregated model inputs and outputs to elevation bands and 
daily, monthly, and annual timesteps, and calculated several annual metrics to describe differences in SWE and 
SWI between CTL and PGW scenarios (Section 2.4).

2.1.  Study Area

The model domain was a 311 × 300 km area in Colorado, United States, encompassing the headwaters of Colo-
rado and Gunnison River Basin portions of the UCRB (Figure 1). Elevations within the domain ranged from 
1,313 to 4,385 m (Figure 1). The model domain is a snow-dominated mountainous region with deep persistent 
snowpacks and high runoff generation (Figure 1; Hammond et al., 2018; Miller et al., 2016); seasonal snowpacks 
in the region serve as the primary source of annual streamflow with snowmelt contributing to an estimated 71% 
of total UCRB runoff (Li et al., 2017).

2.2.  Model Description and Simulations

To simulate detailed snow evolution processes for both current and future climate conditions, we utilized Snow-
Model, a spatially distributed physics-based snow evolution modeling system (Liston & Elder, 2006a; Liston 
et al., 2020), forced with WRF convection-permitting and orography-resolving regional climate simulations on a 
4-km grid resolution (Liu et al., 2017; Rasmussen & Liu, 2017). WRF climate simulations provided the atmos-
pheric forcing conditions to drive SnowModel in both a current and future climate scenario. A pair of continuous 
13-water-year (2001–2013) WRF model simulations was used: (a) a current climate simulation CTL forced using 
ERA-Interim reanalysis, and (b) a future climate simulation using the PGW method. The PGW simulation uses 
the ERA-Interim reanalysis for the same period as (a) and adds an ensemble mean climate delta (increase in 
radiative forcing) from 100 years in the future for the most extreme Representative Concentration Pathway (RCP) 
8.5 scenario. The two-dimensional 4-km grid spacing hourly WRF simulation output (Rasmussen & Liu, 2017) 
for both CTL and PGW scenarios were subset to our study area model domain and used as atmospheric forcing 
for running SnowModel.
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SnowModel simulations were run for both CTL and PGW scenarios with a three-hour time step and 100-m spatial 
grid resolution (9.32 million grid cells across the model domain; Figure 1; Sexstone et al., 2022). Elevation and 
land cover data (30-m spatial resolution) were provided by the U.S. Geological Survey (USGS) National Eleva-
tion Data set (U.S. Geological Survey, 2020) and North American Land Change Monitoring System (Canada 
Centre for Remote Sensing, 2020) and were resampled to the 100-m spatial grid resolution using average resa-
mpling and mode resampling (GDAL/OGR,  2022), respectively. Hourly WRF precipitation, air temperature, 
relative humidity, and wind speed and direction data were aggregated to three-hour values to correspond with the 
model simulation time step. Three-hour WRF forcing data along with the mean elevation of each 4-km WRF grid 
cell were used by MicroMet (Liston & Elder, 2006b), a high-resolution meteorological distribution submodel of 
SnowModel, to downscale and create the 100-m spatial resolution meteorological forcing data required to run 
SnowModel. The Dai (2008) rain-snow precipitation phase fraction parameterization (Liston et al., 2020) was 
used to calculate a rain-snow fraction of precipitation inputs for this study. Other submodels that make up the 
SnowModel modeling system were used to simulate spatially distributed snowpack evolution across the study 
area including: EnBal (Liston, 1995), which computes surface energy exchanges between the snow and atmos-
phere; SnowPack (Liston & Hall, 1995), which simulates the seasonal evolution of snow depth and SWE; and 
SnowTran-3D (Liston & Sturm,  1998), a three-dimension model that simulates snow redistribution by wind 
over topographically variable terrain. CTL and PGW SnowModel simulations include snow sublimation from 
the surface, canopy, and blowing snow (Sexstone et al., 2018). SnowModel simulation outputs (100-m spatial 
resolution) of SWE, SWI, snowmelt, precipitation, fraction of precipitation falling as snow, and air temperature 
were aggregated from a three-hour to a daily time step and used in this study.

2.3.  Model Evaluation

SnowModel simulations for the CTL scenario were evaluated using two independent data streams, snow telemetry 
(SNOTEL) station observations and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite obser-
vations. Simulated precipitation and SWE values were evaluated using SNOTEL station observations of precipi-
tation and SWE at 71 sites ranging in elevation from 2,591 to 3,523 m that included at least three complete water 
years of observations during the study period (Table S1 in Supporting Information S1). Simulated snow-covered 

Figure 1.  Snow modeling study area with (a) elevation at 100-m modeling resolution and existing snow telemetry stations and (b) Moderate Resolution Imaging 
Spectroradiometer snow persistence (SP, the % of time snow is present from 1 January to 3 July) at 500-m resolution. Inset in (a) shows elevation distribution, inset in 
(b) shows cumulative fraction of the study area. (c) Location of the snow modeling domain study area and the Upper Colorado River Basin in the United States. Black 
and orange contours in (a, b) and the vertical lines of the same color in the insets of (a and b) separate the domain into three elevational categories that are used for 
synthesizing patterns throughout our analyses: “high,” >3,300 m; “mid,” 2,300 m < elevation ≤ 3,300 m; “low,” 2,300 m.
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area and snow persistence (SP) were evaluated using daily cloud gap filled MODIS observations, and derived 
SP grids. A grid cell and day in the model output was considered to be snow covered if SWE ≥10 mm; and SP 
was calculated as the fraction of time snow was present from 1 January to 3 July. Evaluation using MODIS data 
was completed for all areas of the domain in the seasonal snow zone, where SP is greater than 50% (Figure S3 
in Supporting Information S1). Prior work has evaluated the WRF forcing (Rasmussen & Liu, 2017) used in our 
model simulations, and the model estimates reliably reproduced the annual, seasonal, and sub-seasonal precip-
itation and surface temperature climatology in mountain regions of the western United States (Liu et al., 2017; 
Rasmussen, Baker et  al.,  2011). Likewise, SnowModel has been rigorously evaluated and shown to perform 
well in seasonally snow-covered environments similar to the study area (e.g., Greene et  al.,  1999; Hiemstra 
et al., 2006; Liston & Elder, 2006a, 2006b; Liston & Hiemstra, 2008; Prasad et al., 2001; Sproles et al., 2013; 
Sexstone et al., 2018; Sexstone, Penn et al., 2020). For details on the methods used to evaluate the SnowModel 
simulations used in this study, please refer to Text S1 in Supporting Information S1.

2.4.  Analysis of Model Inputs and Outputs

We examined the precipitation, temperature, and fraction of precipitation falling as snow on monthly, annual, and 
mean annual timescales across 13 years of simulation. We further examined SWE and SWI at daily resolution. 
We focus many of our analyses on variability in mean annual SWE and SWI by elevation, as prior studies have 
used coarser spatial resolutions less able to resolve mountain topography and elevational snow variability (Ikeda 
et al., 2021; Musselmann, Molotch, & Margulis et al., 2017). Because the 13-year window is too short for evaluat-
ing temporal variability and trends, we evaluated 13-year average differences between CTL and PGW scenarios. 
We aggregated daily SWE and SWI to 100-m elevation bands (Figure S1 in Supporting Information S1) using 
the exactextractr (Baston, 2020) R package to obtain daily area-weighted averages for each unit. Spatial units 
across the domain were classified into 31,100-m elevation bands ranging from 1,300 to 4,300 m. For mean annual 
scale analyses, the mean of annual totals (e.g., precipitation) or the mean of annual means (e.g., temperature) 
were computed. For analyses plotting results by elevation, we computed the median value of a given metric for 
all spatial units falling within each 100-m elevation band. For example, when displaying the CTL peak SWE for 
3,000 m in Figure 3, we first calculated the peak SWE for each simulation year (2001–2013) and each spatial 
unit, then took the mean of all simulation years for that unit, and finally took the median value of peak SWE for 
all spatial units with the 100-m elevation classification of 3,000 m.

We used a threshold in rainfall/SWE to differentiate between snowmelt dominated input and mixed input because 
without a threshold, snowmelt events with an insignificant amount of rain would be categorized as mixed. A 10% 
threshold in rainfall/SWE, where input with rainfall/SWE >= 10% is mixed input and rainfall/SWE < 10% is 
snowmelt input, was adopted here and is functionally similar to those used in other rain on snow studies (Cohen 
et al., 2015; Guan et al., 2016; Lundquist et al., 2008). We calculated six annual SWE and SWI metrics for each 
spatial unit (Figure S1 in Supporting Information S1) using median daily values of model outputs as described 
above. Our focus is on SWI, which includes rainfall and snowmelt, because it is more indicative of hydrologic 
response in snow dominated areas than precipitation alone. Annual metrics calculated were: (a) peak SWI, which 
represents peak daily SWI, (b) peak SWE, (c) peak SWI DOWY, the day of the water year on which the peak 
SWI occurs, (d) peak SWE DOWY, the day of the water year when peak SWE occurs, (e) SWI50 DOWY, the day 
of the water year on which 50% of the annual SWI has occurred, and (f) input seasonality (IS), which is similar 
to the precipitation seasonality metric (Dingman, 2002; Markham, 1970) but calculated with SWI time series 
rather  than precipitation (Barnhart et al., 2022). IS is an index of how much mean annual input occurs within 
a concentrated period or is equally distributed throughout the year and is calculated using monthly SWI totals.
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� (1)

where:

A is the annual sum of SWI.

Mi is the monthly sum of SWI.

Finally, we computed the fraction of SWI sourced from snowmelt (fsnow) and mixed input (fmix) for each day using 
summed total values of SWI for each spatial unit (rather than mean values) separated into three categories: snowmelt 
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input (rainfall/SWE ≤ 0.1 and SWE > 0), mixed input (rainfall/SWE > 0.1 and SWE > 0), and rainfall input (rain-
fall > 0 and SWE = 0), and these values were then totaled for each spatial unit to calculate fsnow and fmix as:

𝑓𝑓snow =

(

snowmelt input

snowmelt input + rainfall input + mixed input

)

� (2)

𝑓𝑓mix =

(

mixed input

snowmelt input + rainfall input + mixed input

)

� (3)

In addition to assessing SWI changes by elevation between CTL and PGW scenarios using annual scale metrics, 
we implemented two subsequent analyses to examine domain-wide impacts to total SWI. To better understand 
patterns and changes in total study area mean annual SWI by elevation and time of the year, we calculated the 
fraction of total study area mean annual SWI generated by each elevation band for each month for CTL and 
PGW separately. To investigate snowmelt contributions to SWI, and how they differ between PGW and CTL, we 
mapped the mean annual fraction of SWI contributed from snowmelt and calculated the mean monthly snowmelt 
contributed SWI for both scenarios, and how this changed between scenarios. Finally, we investigated differ-
ences between mean annual change and annual change within the same scenario and between scenarios for two 
simulation years (2011, greatest peak SWE for CTL, and 2012, lowest peak SWE for CTL) that highlight high 
interannual variability of snow and SWI.

In reporting the results of our analyses, we use three elevation categories to synthesize patterns in SWE and SWI 
change by elevation: “high,” >3,300 m; “mid,” 2,300 m < elevation ≤ 3,300 m; “low,” ≤2,300 m. These elevation 
categories were chosen because they broadly reflect the satellite-derived boundaries of the present intermit-
tent and seasonal snow zones in the study region, zones that reflect similar snow patterns (Moore et al., 2015) 
and similar patterns of soil moisture and streamflow response to snowmelt (Hammond et al., 2018; Harrison 
et al., 2021). These elevation categories are also consistent with regional regression equation elevation ranges for 
streamflow prediction in ungaged areas (Capesius & Stephens, 2009; Eurich et al., 2021).

3.  Results
To examine differences in SWE and SWI between CTL and PGW scenarios, we first evaluated performance of 
SnowModel in the Colorado portion of the UCRB for the CTL scenario (Section 3.1) and assessed differences 
in the meteorological forcing between CTL and PGW (Section 3.2). We then quantified differences in SWE 
(Section 3.3) and SWI (Section 3.4) between CTL and PGW using daily model output and annual-scale synthesis 
metrics for elevation bands across the study area.

3.1.  Model Evaluation

We evaluated simulated SnowModel SWE for the historic (water years 2001–2013) CTL scenario using SNOTEL 
stations observations (Figure S2, Table S1 in Supporting Information  S1) and simulated SnowModel snow 
covered area using MODIS observed snow covered area for water years 2001–2005. Comparison of simulated 
SWE with all available observations from 71 SNOTEL stations within the study domain showed a root mean 
square error (RMSE) of 98 mm and Nash–Sutcliffe efficiency (NSE) of 0.72 for periods when both observed and 
simulated SWE were not equal to zero. NSE performance statistics computed individually for simulation results 
at each SNOTEL station (Table S1 in Supporting Information S1) show 30% of stations displayed a very good 
performance rating (0.75 < NSE < 1.00), 25% of stations had good performance (0.65 < NSE < 0.75), 17% of 
stations were satisfactory (0.50 < NSE < 0.65), and 28% of stations were unsatisfactory (NSE < 0.50) accord-
ing to criteria established in Moriasi et al. (2007). Simulated SWE at SNOTEL stations was biased low overall 
(PBias −6.7%, mean error −14 mm) compared to observations, following a low bias in simulated precipitation 
(i.e., WRF precipitation downscaled to a 100 m spatial resolution by SnowModel) relative to observations (PBias 
−6.5%, mean error −27 mm). Simulated precipitation exhibited an RMSE of 97 mm and NSE of 0.88 when 
compared to SNOTEL observations. The SnowModel snow covered area daily time series by elevation band 
showed agreement with remotely sensed values with a median study area NSE of 0.33 and PBias of 1.9% for areas 
with seasonal snowpack (SP > 50%). SnowModel differed most from remotely sensed estimates during abrupt 
accumulation and melt events, but showed close alignment for accumulation and melt periods (Figure S3a–d 
in Supporting Information S1). The NSE of modeled and remotely sensed snow-covered area values for 100-m 
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elevation band units across the study area, performance was generally best for mid and high elevation areas in the 
seasonal snow zone (Figure S3e in Supporting Information S1), with poorer performance in low elevation, inter-
mittently snowy areas. Finally, in comparison to existing SWE products at 4-km and 1-km spatial resolutions, 
the 100-m simulations for current climate conditions used in this paper better matched the spatial variability of 
near peak SWE for the UCRB (Figures S17, S18 in Supporting Information S1). These results suggest the forcing 
data and level of performance of SnowModel is adequate for our analyses tracking snow accumulation and melt.

3.2.  Differences in Meteorological Forcings Between Scenarios

The PGW scenario was warmer and wetter than the CTL scenario and exhibited reductions to the fraction of 
precipitation falling as snow. Mean monthly PGW temperatures for all months ranged from 4.9 to 5.6°C warmer 
than for CTL for elevation bands across the domain. We observed the greatest positive changes in temperature in 
the eastern, high elevation region of the study domain, with the greatest changes in fall (Figure 2b), followed by 
spring. In these seasons, high elevations exhibited the greatest positive changes, with changes in October up to 
6.3°C for high elevations. The smallest long-term changes occurred during winter on the order of 4°C.

Following the thermodynamic relation between temperature and specific humidity, mean monthly PGW precipi-
tation tended to be higher, by approximately 146 mm/y relative to CTL across all elevations. The greatest precip-
itation changes occurred for high elevations in the central and northeast parts of the study domain. Precipitation 
was higher compared with CTL in all seasons except spring (Figure  2a). The greatest positive precipitation 
changes occurred during winter at high elevations, resulting in increased snowfall, and the greatest negative 
changes occurred during spring months at high elevations.

The fraction of precipitation delivered as snow was reduced by as much as 40% between CTL and PGW, with 
every 100-m elevation band indicating lower snowfall fraction during at least one month (Figure 2c). In cold 
season months between November and April, high elevations indicated little change in the fraction of precipita-
tion delivered as snow, whereas the low elevations indicated losses of up to 40%, especially in December through 
February. High elevations indicated the greatest losses in proportion of precipitation delivered as snow during 
May and October, likely owing to positive changes in temperature projected during those months (e.g., Klos 
et al., 2014; Scalzitti et al., 2016a, 2016b).

Figure 2.  Mean monthly (a) precipitation, (b) temperature, (c) snowfall fraction of precipitation, and (d) surface water input difference between pseudo-global-warming 
(PGW) and control (CTL) scenarios for 100-m elevation bands across the study area. In all cases values presented are PGW minus CTL.
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Figure 3.  Mean annual averages of surface water input (SWI) and snow water equivalent (SWE) annual metrics by elevation 
and scenario (control - CTL, pseudo-global-warming - PGW) as well as values for 2011 (high snow year) and 2012 (low 
snow year). Figure S9 in Supporting Information S1 contains annual SWI metrics calculated using only snowmelt-derived 
SWI. Transparent orange, yellow and blue coloring in the background of each panel reflects three elevation categories used 
to synthesize patterns in snow and SWI changes by elevation: high, >3,300 m; mid, 2,300 m < elevation ≤ 3,300 m; low, 
≤2,300 m.
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3.3.  Differences in SWE and Snowmelt Between Scenarios

3.3.1.  High Elevations

We evaluated changes in the timing and magnitude of SWE between the CTL and PGW scenarios using annual 
metrics that synthesize relevant shifts in daily time series of SWE. The greatest mean annual peak SWE for both 
scenarios occurred at the highest elevations (Figure 3), with the PGW scenario exhibiting, on average, peak SWE 
values that were only 3% lower (13 mm) relative to CTL. Despite higher mean annual precipitation for PGW at 
all elevations during most of the snow accumulation season (Figure 2), peak SWE was only higher over a small, 
high elevation area in the PGW scenario relative to CTL (Figure 3, Figure S13 in Supporting Information S1). 
The date of peak SWE was latest at the high elevations for CTL and earlier at high elevations in the PGW 
scenario (−17 days, Table S4 in Supporting Information S1). Additional comparisons using mean daily values 
(Figure 4) and mean monthly values (Table S2 in Supporting Information S1) confirmed SWE magnitude and 
timing changes observed using annual metrics. The months where high-elevation SWE differed most between the 
scenarios were May–July (−44 to −191 mm, Table S2 in Supporting Information S1) and October–December 
(−21 to −34 mm). On average, during these months, the PGW scenario exhibited lower SWE than the CTL 
scenario. High elevations showed elevated February to April SWE from CTL to PGW (+1 to +13 mm, Table 
S2 in Supporting Information S1), with patterns in average monthly snowmelt matching the patterns observed 
for SWE change between CTL and PGW. Notably, while snow did not melt at high elevations during the CTL 
scenario for the months December to February, small amounts of snowmelt were generated for these months in 
the PGW scenario (Table S2 in Supporting Information S1).

3.3.2.  Mid Elevations

When PGW was compared with CTL, pronounced reductions in peak SWE occurred at mid elevations (−26 mm, 
−14%, Table S4 in Supporting Information S1, Figure 3). The date of peak SWE was earlier during the water 
year (−23 days, Table S4 in Supporting Information S1), a larger temporal shift than observed for high or low 
elevations. Changes in mean monthly values revealed that mid elevations displayed the largest reductions in SWE 
for April (−53 mm, Figure S15 in Supporting Information S1) and May (−51 mm, Table S2 in Supporting Infor-
mation S1), and exhibited no change for the months July–September when snow was absent in both scenarios. 
Monthly mean snowmelt was higher for the mid elevations during winter months, as earlier peak SWE corre-
sponded with greater winter melt and reduced spring and summer snowmelt (Table S2, Figure S8 in Supporting 
Information S1).

3.3.3.  Low Elevations

Low elevations displayed the greatest percentage reductions in peak SWE for the PGW scenario compared to 
CTL (−30 mm, −45%, Table S4 in Supporting Information S1) and when comparing low elevation reductions 
to those at mid and high elevations. The date of peak SWE occurred 21 days earlier, a similar advancement to 
the earlier peak SWE observed for mid elevations. Low elevations displayed reductions in mean monthly SWE 
(−60% to −100%, Table S2 in Supporting Information S1) for all months except for July and August which lacked 
SWE in both scenarios. These reductions were further highlighted by patterns displayed using mean daily SWE 
values for the two scenarios (Figure 4). Although all elevations experienced earlier peak SWE with greater snow-
melt earlier in the year, low elevations were unique in displaying a nearly complete loss of SWE and subsequently 
snowmelt in the PGW scenario (Figure 4, Figure S8, Table S2 in Supporting Information S1).

3.4.  Differences in Surface Water Input Between Scenarios

3.4.1.  High Elevations

Because we observed differences in SWE and snowmelt between the two scenarios, we then analyzed differences 
in SWI between CTL and PGW scenarios by elevation. Mean annual peak daily SWI was highest in the high 
elevation band for CTL (Figure 3), with higher peak daily SWI in the PGW scenario compared to CTL (+30%, 
+12 mm/d, Table S4 in Supporting Information S1). The date of peak daily SWI for high elevations occurred 
14 days earlier in the PGW scenario. The IS metric, which indicates whether input is focused primarily within 
a few months or is evenly distributed throughout the year, showed that the most temporally concentrated input 
was at high elevations during CTL. That input became less concentrated for PGW at the same elevations (−13%, 
Table S4 in Supporting Information S1). For the CTL scenario, the mean annual centroid date of SWI was earlier 
in the western part of the domain, and later at high elevations and in the eastern part of the study area. The 
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centroid date of mean annual SWI was earlier for PGW than for CTL for all elevations (Table S4, Figure S14 in 
Supporting Information S1).

Mean monthly SWI was higher in the PGW scenario than the CTL scenario for all months except for June and July 
(Table S3 in Supporting Information S1). The magnitude of the difference was greatest in April and May, with the 
negative differences in June and July nearly perfectly offsetting the positive differences in April and May from a 
mass balance perspective. Changes observed in mean monthly SWI were further evidenced by patterns in mean 
daily values. For CTL, high elevations experienced long and continuous periods of elevated snowmelt-derived 

Figure 4.  Mean annual daily snow water equivalent (SWE, top) and mean annual daily surface water input (SWI, bottom) by scenario (control - CTL, pseudo-global-
warming - PGW) and elevation band. A 7-day moving mean was applied for better visualization between bands, but this compresses peak daily SWI. SWE and SWI 
patterns are separated into three elevational categories: high, >3,300 m; mid, 2,300 m < elevation ≤ 3,300 m; low, ≤2,300 m. Figure S7 in Supporting Information S1 
displays greater details in daily SWE and SWI for the low elevation category.
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SWI in May and June (Figures 4 and 5), whereas PGW SWI at high elevations displayed higher, concentrated 
peaks earlier in the year. From here forward, we use the term “flashier” to represent more rapidly occurring and 
higher peak SWI observed for PGW as compared to CTL. At high elevations, snowmelt contributions to SWI 
for CTL were greatest in April and May (Figure 5), with PGW snowmelt contributions to SWI generally higher 
earlier in the spring and lower later in spring and summer.

3.4.2.  Mid Elevations

Peak daily SWI was similarly greater for PGW at mid elevations relative to CTL as compared to high elevations 
(+34%, +10 mm/d, Table S4 in Supporting Information S1). However, the date of peak daily SWI was 20 days 
earlier in the year at mid elevations, a greater advance than observed for high elevations. IS declined the most 
at mid and low elevations (−18%, Table S4 in Supporting Information S1). Mean monthly total SWI values for 
mid elevations revealed higher values in monthly SWI for October–April, similar to what was observed for high 
elevations, but with reductions observed for May, June, July, and September. Elevated SWI for March and April 
in mid elevations was offset by reductions to May and June SWI. Assessing differences in CTL versus PGW April 
SWI, mid elevations displayed the greatest reductions (Figure S15 in Supporting Information S1). Similar to the 
PGW-CTL differences observed in mean daily values for high elevations, mid elevations displayed elevated daily 
SWI (Figure 4) and earlier daily snowmelt contributions to SWI (Figure 5). This period was followed by reduc-
tions in SWI and snowmelt contributions, which occurred earlier in the year than at high elevations. While peak 
daily SWI for high elevations consistently displayed higher values for PGW, some mid elevation bands displayed 
lower and longer elevated periods potentially due to higher SWI earlier in the season (Figures 4 and 5).

3.4.3.  Low Elevations

At low elevations, peak daily SWI was higher for PGW, and with a greater percent difference than for mid and 
high elevations (+42%, +10 mm/d, Table S4 in Supporting Information S1). The date of peak daily SWI occurred 
23 days earlier in the year and the centroid date of SWI occurred 30 days earlier in the year. Both metrics indicate 
greater differences between scenarios than at mid or high elevations. At low elevations, the difference in mean 
monthly total SWI values between the two scenarios was larger than observed at the mid and high elevations, with 

Figure 5.  Time series of daily surface water input (SWI) by elevation colored by the fraction of SWI sourced from snowmelt (fsnow) for control (CTL) and 
pseudo-global-warming (PGW) scenarios. A 7-day moving mean was applied for better visualization between bands, but this compresses peak daily SWI. SWI patterns 
are separated into three elevational categories: high, >3,300 m; mid, 2,300 m < elevation ≤ 3,300 m; low, ≤2,300 m.
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SWI lower in the PGW scenario compared with the CTL scenario. We observed lower SWI in the PGW scenario 
relative to the CTL scenario in October, March, April, May, July, and August (Table S3 in Supporting Infor-
mation S1), with the greatest reductions for April and May. Changes in mean daily SWI reinforced the patterns 
observed at monthly scale. While mid and high elevations showed (a) larger magnitude shifts in late winter and 
spring SWI (Figure 4) and (b) elevated snowmelt contributions to SWI earlier in the year and reduced contribu-
tions later in the year (Figure 5), low elevations displayed more muted changes both to the change in daily SWI 
as well as the change in daily snowmelt contribution to SWI.

3.4.4.  Differences Between Control and Pseudo-Global-Warming Scenarios for High and Low Snow 
Years

Peak SWE and IS in both scenarios differed greatly between 2011 and 2012 (Figure 3), with substantially higher 
IS, peak SWE and peak SWI during the high snow year (2011) than the low snow year (2012) for CTL and PGW. 
The timing of these metrics also varied greatly, with peak SWE timing occurring considerably earlier for the 
low snow year, especially at high elevations. Peak daily SWI for the high snow year for PGW showed greater 
differences between PGW and CTL values whereas peak SWI was more similar between mean annual and low 
snow year values for the two scenarios. Peak daily SWI appeared to change the most for PGW high snow years 
as compared to CTL values. The centroid of SWI (SWI50) for the low snow year for PGW showed much earlier 
timing as compared to CTL values for the same year.

3.4.5.  Combined High, Mid and Low Surface Water Input Changes and Basin-Wide Response

Total monthly contributions to study area SWI were lowest for both CTL and PGW during the months of Decem-
ber, January, and February, with spring and summer months exhibiting the highest contributions (Figure  6). 
However, June contributions for PGW were substantially lower than other spring and summer months, and substan-
tially lower than for CTL, corresponding with lower precipitation for PGW in the preceding month (Figure 2a). 
Subtracting CTL monthly SWI contributions from PGW monthly contributions revealed higher October to March 
contributions to total study area SWI for PGW, and lower monthly contributions for June–September for all eleva-
tions as compared to CTL. For the months March–May, the direction of monthly contribution changes between 
PGW and CTL depended on elevation. In March, low elevations showed lower PGW monthly contributions to 
total annual study area SWI than for CTL, whereas mid and high elevations showed higher values. In April at 
low and mid elevations, the PGW scenario contributed less to total mean annual study area SWI than the CTL 
scenario. However, at high elevations, the PGW scenario contributed more to total mean annual study area SWI 
than the CTL scenario. In May, mid elevations showed substantially lower PGW contributions than during CTL, 
while high elevations had greater PGW monthly contributions to total annual study area SWI than CTL.

Though snowmelt-derived SWI showed similar spatial distributions across the study area for both scenarios 
(Figures 7a and 7b), less of the total SWI in the PGW scenario came from snowmelt (Figure 7c). Elevation 
was a major CTL on the percent differences in mean monthly snowmelt-derived SWI between PGW and CTL 
(Figure 7d, Table S3 in Supporting Information S1), with high elevations showing higher snowmelt-derived SWI 

Figure 6.  The fraction of total mean annual study area surface water input (SWI) generated by each elevation category for each month for control (CTL) and 
pseudo-global-warming (PGW) scenarios. Elevation categories as follows: high, >3,300 m; mid, 2,300 m < elevation ≤ 3,300 m; low, ≤2,300 m.
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values for PGW relative to CTL in fall and spring months, and reductions in snowmelt-derived SWI relative to 
CTL for summer months. Mid elevations showed higher contributions in fall, winter, and early spring months for 
PGW as compared to CTL, and reductions during late spring and summer months. Low elevations showed higher 
values for December and January, declines for October, November, February, March, April, and May, with no 
change for June to September.

4.  Discussion
The results of high spatial resolution SnowModel simulations used in this study revealed novel elevational patterns 
of changes to SWE and SWI under continued global warming. Simulations indicate that high elevation SWE is 
retained under PGW (Figures 3 and 4, Section 4.1.1). Peak daily SWI was earlier and elevated under PGW, but 
SWI was also more evenly distributed throughout the year (Figures 3 and 4, Section 4.1.2). PGW led to altered 
timing, but not complete loss, of snowmelt contributions to SWI (Figures 5–7), with similar annual elevation 

Figure 7.  Snowmelt contributions to total water year surface water input (SWI) for control (CTL) (a) pseudo-global-warming (PGW) (b) and PGW minus CTL (c), 
and the mean monthly PGW minus mean monthly CTL snowmelt contributions to total SWI by elevation range (d). Elevation categories in (d) are as follows: high, 
>3,300 m; mid, 2,300 m < elevation ≤ 3,300 m; low, ≤2,300 m. The gray contour in (a,b, and c) is for 2,300 m and separates the low and mid elevation category, while 
the black contour is for 3,300 m and separates the mid and high elevation category.
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contributions of SWI to total study area SWI for CTL and PGW scenarios despite seasonal changes (Figures 6 
and 7, Figure S12 in Supporting Information S1, Section 4.1.3). These findings suggest that high resolution snow 
models that (a) better capture mountain topography (e.g., Figures S17, S18 in Supporting Information S1) and (b) 
model forcings that better capture convective and orographic processes will lead to different predictions of snow 
patterns than models without these processes. This is an important consideration for future regional to national 
scale hydrologic modeling applications in snow dominated areas (Garousi-Nejad & Tarboton, 2021; Sexstone, 
Driscoll et al., 2020). Additionally, the IS metric (Barnhart et al., 2022) associated with SWI is an important 
advance in analyzing snowmelt and rainfall inputs to the soil surface. IS captures both timing and intensity of 
snowmelt and rainfall combined, which previously used metrics such as snowfall fraction (Berghuijs et al., 2014) 
and snowmelt rate (Barnhart et al., 2016) fail to fully capture. Finally, we show that existing snow monitoring 
stations become less representative of future SWE (Figure 8, Section 4.2), with implications for the predictive 
capacity of future streamflow forecasting.

4.1.  Elevation-Dependent SWE and SWI Changes

PGW precipitation was greater for all elevations and all months (0.4–0.9 mm/d), consistent with observed trends 
for the Northern Front Range of Colorado (Fassnacht et al., 2018, 2020), except for spring, when precipitation 
declined as compared to CTL (Figure 2). Temperature was higher for all elevations and months (4.9–5.6°C), 
with the greatest positive changes for late spring and fall months. Precipitation and temperature changes from 
SnowModel simulations were generally consistent with regional changes from CMIP6 scenarios (Almazroui 
et al., 2021). The fraction of precipitation falling as snow declined for all elevations and months (up to 40%), 
except for November–April at high elevations. This decline in snowfall fractions is consistent with results across 

Figure 8.  Elevation range of present snow telemetry (SNOTEL) snow monitoring stations in comparison to snow water equivalent (SWE) and surface water input 
(SWI) elevation distributions for control (CTL) and pseudo-global-warming (PGW) scenarios. Q1 is the first quartile of SNOTEL station elevation, Q3 is the third 
quartile.
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the western United States for the mid-21st century (Klos et al., 2014), though our work demonstrates high eleva-
tions retain high snowfall fractions in PGW simulations in contrast to prior work showing ubiquitous declines 
(Rhoades, Jones et al., 2018; Wi et al., 2012).

4.1.1.  Retention of High Elevation SWE Under Pseudo-Global-Warming

In response to changes in precipitation and temperature between the two scenarios, simulations revealed peak 
SWE declined between CTL and PGW for low and mid elevations, on the order of −14% to −45%, while the date 
of peak SWE uniformly shifted earlier in the year for all elevations. The magnitude of this shift was greatest for 
mid elevations (∼23 days, Figure 3). Declines in peak SWE for PGW in the study area are consistent with (a) 
Ikeda et al. (2021) who assessed SWE changes between 2070–2099 and 1976–2005 at 4-km resolution and found 
30%–60% decreases in April 1 SWE in the region with peak SWE 20–30 days earlier and (b) Siirila-Woodburn 
et al. (2021) who reported a 25% decline in peak SWE for the western United States for the period 2025–2049, 
though in our study declines range from −45% for low elevations to −3% for high elevations in the study domain 
for our period of analysis. Our finding that low elevations show the greatest declines in SWE between CTL and 
PGW in the study region (Figures 3 and 4) is consistent with historical declines in SWE for similar elevations 
from 1984 to 2017 in the neighboring Rio Grande Basin (Sexstone, Penn et al., 2020). Limited high elevation 
snow change for PGW is consistent with Barsugli et al. (2020) who reported limited changes in high elevation 
April and May SWE using a 250-m resolution model forced with CMIP5 projections for 2041–2070. SnowModel 
simulations for the Northern Rocky Mountains of Canada similarly project snowpack loss that is strongly eleva-
tion and season dependent for the periods 2045–2059 and 2085–2099 as compared to 1979–1994 (Mortezapour 
et al., 2022). Taken together, these comparisons emphasize that inland, high elevation areas will likely remain 
conducive to substantial snow accumulation for decades to come, especially when assessing high resolution 
model output that better resolves mountain topography and snow dynamics. In maritime, snowy regions of North 
America including the Sierra Nevada and Cascades, high resolution simulations that resolve mountain topogra-
phy are needed to further understand the degree to which snow loss will occur by elevation.

4.1.2.  Earlier and Elevated Peak Daily Surface Water Input, yet More Evenly Distributed Input Under 
Pseudo-Global-Warming

IS, which reflects the concentration of input in time, declined between CTL and PGW across all elevations, with 
similar reductions at all elevations due to higher winter input and lower spring input that result in a more uniform 
distribution of input throughout the year (Figure 3). Despite these reductions in IS, elevated peak daily SWI for 
PGW was observed for all elevations. The dates of peak SWI and SWI centroid moved to earlier in the year for all 
elevations and with the biggest advances for low and mid elevations, consistent with Xu et al. (2021). While prior 
work has shown earlier streamflow timing in the UCRB for future decades (Wrzesien & Pavelsky, 2020) our work 
highlights the potential for higher peak flows and a shorter period of elevated snowmelt SWI during snowmelt 
(Figure 5). Earlier SWI timing for PGW as compared to CTL follow the results from Musselman et al. (2021), 
who show that snowmelt is already occurring prior to peak SWE in recent years as compared to early SNOTEL 
records of the 1980s and suggest that these observed patterns will continue in future decades. For low and mid 
elevations, our results generally align with Kampf and Lefsky (2016) who observed reduced snowmelt contribu-
tions to peak flows in areas where peak flows were historically sourced both from rain and snow contributions. 
Mixed input was a small component of total SWI for both CTL and PGW, consistent with rain on snow analysis 
by McCabe, Betancourt, and Hidalgo (2007), with mixed input only exceeding 10% of total input for approxi-
mately 1 week per year during CTL at the highest elevations and otherwise remaining at 0% of total input.

4.1.3.  Altered Timing, but Not Complete Loss, of Snowmelt Contributions to Surface Water Input

In our study, the fraction of total annual SWI generated by snowmelt was lower for all elevations between CTL 
and PGW (Figures 5 and 7), similar to the results of Li et al. (2017) who showed declines in snowmelt-derived 
streamflow across the UCRB for RCP4.5 and RCP8.5 out to 2,100. Seasonal snowmelt contributions to SWI were 
higher for fall, winter, and spring months at mid elevations (Figure 5, Figure 7d), but lower for summer months in 
PGW, differing from the results of Li et al. (2017) who showed reductions for snowmelt generated streamflow for 
all months. Shifts in the timing of total SWI during spring months was dependent on elevation (Figure 6), with 
low and mid elevations displaying these shifts earlier in the year than high elevations. Half of the SWI for in the 
study area CTL and for PGW was generated by elevations >2,700 m (only ∼37% of study area, Figure 1), gener-
ally consistent with prior research in the UCRB and the neighboring Cache la Poudre watershed where half of the 
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streamflow is generated from elevations >3,000 m (Hammond et al., 2018; Harrison et al., 2021). Cumulative 
contributions to total study area SWI at water year scale retain a nearly identical relation with elevation for PGW 
as compared to CTL (Figure S12 in Supporting Information S1) despite the shifts in timing of sub-annual SWI.

4.1.4.  Implications for the Future of Timing and Magnitude of Water Availability

The combined, and potentially countervailing, effects of greater precipitation and earlier, flashier SWI compli-
cate predictions for the future timing and magnitude of streamflow. The potential for greater precipitation in 
future decades, similar to what is shown by the PGW scenario, may offset streamflow reductions caused by the 
loss of efficiently generated snowmelt from seasonal snowpacks at mid elevations (Reclamation, 2016). However, 
future precipitation changes are uncertain (Almazroui et al., 2021), and while simulations suggest future droughts 
in western North America will be more spatially pervasive and extreme, uncertainties in vegetation processes and 
precipitation representation in models complicate the interpretation of these results (Cook et al., 2020). Addition-
ally, warming during spring and summer months could partition summer SWI to soil and vegetation evaporative 
losses rather than streamflow or groundwater recharge (Barnhart et al., 2020; Gordon et al., 2022; Hammond 
et al., 2019; Harpold & Molotch, 2015; Tague & Peng, 2013), as earlier snow disappearance can lead to earlier 
ET fluxes.

Prior work has shown that snowmelt rate and timing are linked (Alonso-González et al., 2022; Serreze et al., 1999), 
with slower snowmelt associated with decreased streamflow generation (Barnhart et  al.,  2016; Musselman, 
Molotch, & Molotch, 2017). However, recent research also highlights that earlier snowmelt timing and associated 
higher runoff efficiency (runoff generated per unit of input) may compensate for lower future snowmelt rates 
(Barnhart et al., 2020; Gordon et al., 2022; Hammond & Kampf, 2020; Jeton et al., 1996). The competition of 
these two mechanisms may dictate how runoff from snow-dominated sites might change in the future as snowmelt 
rate and timing change under future climate conditions. Barnhart et al. (2020) report that snowmelt season runoff 
was governed by the competing influence of snowmelt timing and snowmelt rate via a modeling study where 
each factor was considered separately due to the linkage between snowmelt rate and timing (Trujillo et al., 2014). 
The simulated changes in subsurface storage and melt season runoff were more sensitive to changes in snowmelt 
timing than snowmelt rate for a site in Colorado, suggesting greater runoff from earlier snowmelt may counter-
act runoff losses due to slower snowmelt and that this process is mediated by plant available water storage and 
energy availability. In the Lower Colorado River Basin, the effects of temperature-induced snow loss on annual 
streamflow appear to have been moderated by enhanced winter hydrological inputs and streamflow production 
(Robles et al., 2021).

In the current hydroclimate, streamflow generation for many western U.S. mountain watersheds tends to peak 
in spring whereas runoff efficiency peaks in winter. As watersheds become warm enough to experience winter 
melt and rain on snow, this enhanced winter runoff efficiency may act as a temporary buffer against reductions 
to streamflow generated by concentrated spring and summer snowmelt (Hammond et al., 2020). Results of the 
present study indicate earlier SWI with higher peak SWI values at all elevations (Figure 3). This result, which 
integrates changes in snowmelt and precipitation phase through SWI, contrasts with Musselman, Clark, Liu 
et al. (2017), Musselman, Molotch and Margulis (2017), who, using the same meteorological forcing data as this 
study, reported declines in future snowmelt input to the hydrologic system and possible concomitant declines in 
streamflow. Earlier SWI may lead to efficient streamflow generation if soil moisture is conducive to infiltration 
excess overland flow, saturation excess overland flow, or shallow subsurface flow. However, for warmer low 
and mid elevations where snowmelt is a smaller component of SWI, earlier SWI was simulated to be associated 
with reduced annual total SWI (Hale et  al.,  2022). Integration of high resolution SnowModel output with a 
hydrological model would be useful to assess study-area-wide hydrologic partitioning and streamflow generation 
for future periods. This integration is needed to examine the combined effects of (a) changes occurring to deep 
snowpacks in relatively small areas of the western United States and (b) the near loss of shallow snowpacks across 
large areas on basin-wide water availability.

The combined effects of shifts in timing and magnitude in SWE and SWI also have broad implications for 
reservoir management and wildfire dynamics. Continued warming is diminishing role of snowy mountains as 
natural reservoirs, and thus water resource management will likely need to adjust to shifting reservoir inflow 
timing and magnitude (Rhoades, Ullrich et  al.,  2018). With drought severity and extent expected to increase 
in coming decades (Cook et al., 2020; Gutzler & Robbins, 2011), interannual variability in annual SWE and 
SWI metrics (highlighted by years 2011 and 2012, Figure 3) could test coordinated reservoir management for 
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multiple objectives. Even if annual streamflow remains the same or increases slightly, it could be hard for coor-
dinated reservoir management to adjust to changes in the timing of inflows (Cohen et al., 2020; Li et al., 2010; 
Sterle et  al.,  2020), given a greater offset between water supply and demand timing. These changes will be 
most impactful and relevant for water management decision making when hydroclimatic shifts for individual 
years compound and result in changes to decadal and multi-decadal variability (Garrick et al., 2008; Hurkmans 
et al., 2009; McCabe, Clark, & Hay, 2007; Nowak et al., 2012; NRC, 2007).

Hedging in reservoirs, the practice of storing more water during the spring to meet the widening gap between 
inflows and outflow demand during the summer low flow period, may be needed to respond to shifting seasonal 
reservoir inflows (Jones & Hammond, 2020). Other potential adaptations to shifting SWI timing and magnitude 
for downstream water availability include the construction of new surface water reservoirs or the enhancement of 
existing infrastructure (Perry et al., 2017; Reclamation, 2021), the adjustment of current reservoir management 
strategies (Delaney et al., 2020; Reclamation, 2021; Sumargo et al., 2020), and recharging groundwater during 
periods of excess (Scanlon et al., 2016; Zhang, 2015), and according to Kellner and Brunner (2021) immedi-
ate action is required to plan for balanced upstream-downstream water availability in water infrastructure and 
management decision making. Over the past several decades, earlier snowmelt occurrence and reduced peak 
SWE have corresponded with increased wildfire activity and wildfire severity (Westerling,  2016; Westerling 
et al., 2006) as well as with increasing solar forcing on snow in the western U.S (Gleason et al., 2019). Wildfires 
have increasingly occurred in seasonally snow covered areas from 1984 to 2020 throughout the western United 
States (Kampf et al., 2022). Continued snow loss and earlier melt may lead to larger and more intense fires in 
these areas in future decades, though potential increases in spring and summer precipitation could have a coun-
tervailing influence.

4.2.  Snow Measurement Network Coverage and the Distributions of SWE and SWI

Current snowpack monitoring does not represent the range of land covers, elevations and terrain classes found 
in mountainous regions (Fassnacht et al., 2012; Kampf et al., 2020; Sexstone & Fassnacht, 2014), partially due 
to the difficulties of measuring snow in alpine areas. Stations do not always reflect their nearby surroundings 
(Meromy et  al.,  2013), and conditions in mountainous regions experience substantial inter-annual variability 
(Fassnacht et al., 2003, 2012) especially in the alpine (Sexstone et al., 2018). The 75 existing SNOTEL sites in 
the study region range in elevation from 2,605 to 3,532 m, with a mean elevation of 3,094 and median of 3,127 m. 
Although the mean and median elevation of the SNOTEL sites is greater than the median and median elevations 
of the modeling domain, the SNOTEL site elevation range does not cover much of the persistent snow zone above 
3,500 m in the high elevation category (Figure 8). Prior work has suggested these networks will have reduced 
predictive capacity for streamflow forecasting as snowpacks continue to decline (Livneh & Badger, 2020). A lack 
of observations at both the high and low extents of where snow accumulates could inhibit the ability to predict 
snow and streamflow conditions.

For both CTL and PGW, the existing network of SNOTEL stations does not monitor areas with the highest mean 
annual peak SWE values (Figure 8a), though it does sample the elevations with the greatest volumetric SWE in 
both scenarios (Figure 8b). With the greatest declines in SWE for low and mid elevations for PGW, greater future 
volumetric SWE will occur at high elevations not sampled by the existing network. Adding sites at higher eleva-
tions not presently monitored could allow for better tracking the remaining water content within snow to provide 
information for downstream streamflow forecasting and coordination. However, in future decades, treeline may 
advance in elevation, shrinking alpine areas (Kummel et al., 2021), potentially making existing stations more 
reflective of study area snowpacks in the future sub-alpine. The study area examined here is generally higher in 
elevation and snowier than other areas of the UCRB (Figures 1a and 1b), so additional snow monitoring in this 
area may provide more useful information on the distribution of SWE and snowmelt-derived SWI that drives 
water availability than instrumentation in other areas of the basin.

Considering the volumetric distribution of mean annual SWI (Figure 8c), the existing SNOTEL network gener-
ally samples elevations above those with greatest SWI. Adding additional sites to slightly lower elevations could 
better capture the timing and rate of rainfall and snowmelt input both in the near-term and long-term. Low and 
mid elevation sites would also better capture mid-winter melt not currently measured by exiting monitoring 
stations in low and mid elevations that measure precipitation but not SWE or soil moisture. Given that a greater 
fraction of precipitation in future years will fall as rain rather than snow (Figure 2, Klos et al., 2014), precipitation 
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measurements at low and mid elevation sites may suffer less from under catch since snow is more susceptible 
to this phenomenon than rain (Groisman & Easterling, 1994). USGS gaged headwater watersheds are generally 
more uniformly distributed across elevations than SNOTEL sites, and although there are a number of gaged 
headwater watersheds draining only the high elevation persistent snow zone, there are fewer gaged watersheds 
isolating the transitional or low snow zones; rather, gages at lower elevations tend to integrate the hydrologic 
response from multiple snow zones (Kampf et al., 2020). Thus, additional gaging better isolating the hydrologic 
response to different snow zones could also provide information for downstream flow forecasting and coordina-
tion. Additionally, soil moisture is sparsely monitored in the basin, but additional soil moisture monitoring along 
elevation gradients in the basin may help to mitigate lessened predictive capacity due to declining snowpacks at 
existing snow monitoring stations (Livneh & Badger, 2020).

4.3.  Limitations, Uncertainties and Areas for Continued Research

Though the results of this study were coherent between analyses implemented at multiple time scales (daily, 
monthly, annually) and broadly consistent with prior research, several factors limit the scope of inference of our 
study. First, our model evaluation revealed poorer performance in low snow areas, areas with limited existing 
snow monitoring to use for model calibration and validation. Further work is needed to evaluate whether mode-
ling snow accurately in these low snow areas is important for assessing water availability at management relevant 
spatial and temporal scales. Second, though SNOTEL sites use Alter wind shields to increase precipitation catch 
efficiency (Serreze et al., 1999), under catch has been approximated at ∼11% (Yang et al., 1998), with up to 
30% in an intense snowstorm with high winds in Colorado (Rasmussen, Liu et al., 2011). Our use of SNOTEL 
data for model evaluation is thus susceptible to this source of error (Scalzitti et al., 2016a, 2016b). Additionally, 
several of our analyses were based on aggregation of model output to elevation bands, with local patterns lost in 
the process. Further analysis of model output for sub-regions may identify nuanced patterns compared to those 
identified using study-area-wide elevational aggregation.

There are also limitations associated with the regional climate model data used as input to this study's SnowModel 
simulations. Liu et al. (2017) broadly characterized the biases inherent in the WRF PGW data set and noted a 
warm and dry bias in the central U.S. in the late summer months. However, given that this issue is related to 
convective storms in the late summer, it is unlikely that this would substantially affect the main results of our anal-
yses. There are also limitations to using a single model representation of future climate precipitation given that 
it is not possible to characterize uncertainty with this method. As ensemble convection-permitting simulations 
become available on longer timescales, future research could analyze changes in snowpack from an ensemble 
framework to assess uncertainty. Finally, although the PGW methodology does not represent large-scale changes 
in storm tracks associated with climate change, the methodology allows assessment of specific time periods and 
see how actual weather events in that time period might have been different if they experienced thermodynamic 
climate warming and enhanced moisture.

Subsequent snow modeling efforts could explore including dynamical vegetation to account for increased forest 
cover at high elevations (e.g., Barnhart et al., 2021), to explore the effects of significantly changed canopy struc-
ture due to more prevalent wildfire in snowy areas (Kampf et al., 2022), and to address the effects of forest distur-
bance on snowpack and streamflow (Goeking & Tarboton, 2020; Varhola et al., 2010). The existing simulations 
might also be used to examine differences in SP by aspect and landcover (e.g., Barsugli et al., 2020; Sexstone, 
Penn et al., 2020). While SWI as used in this analysis provides an initial estimate of runoff resulting from rainfall 
and snowmelt input available at the soil surface, this estimate does not account for the various pathways that SWI 
could take into the soil, across the subsurface, or into the atmosphere. Thus, connecting the surface water inputs 
from this study to a hydrological model would enable detailed exploration of changes to evapotranspiration, soil 
moisture, groundwater recharge, and streamflow generation due to snow loss, changes in SWI timing and magni-
tude, and changes to the synchrony of energy and water availability (e.g., Gordon et al., 2022).

5.  Conclusion
The results of high spatial resolution PGW SnowModel simulations for the Colorado portion of the UCRB 
revealed widespread SWE loss, with reductions in peak SWE at low (−45%, −30 mm) and mid (−14%,–26 mm) 
elevations. However, high elevation, continental areas in the bounds of this study, and elsewhere in the UCRB, 
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are projected to experience a more limited peak SWE change (−3%) and will likely remain conducive to seasonal 
snow accumulation and melt for decades to come. Peak SWE and peak SWI occurred earlier in the year (peak 
SWE, 17–23 days; peak SWI, 14–23 days) for all elevations under PGW, with higher peak daily SWI magnitude 
(30%–42%, 10–12 mm/d) also noted at all elevations. Despite earlier and elevated peak daily SWI, reduced IS 
revealed more evenly distributed SWI under PGW. Snowmelt-derived surface water inputs were lower at the 
annual scale, but experienced seasonal growth and shifts in timing dependent on elevation for PGW as compared 
to CTL, with low elevations experiencing shifts earlier in the year. Finally, existing snow monitoring stations 
became less representative of future SWE, because there are few monitoring sites at high elevations where future 
SWE will contribute a larger fraction of total SWI compared to current climatic conditions. Water stored in snow-
packs has historically served as a reliable extension of manmade reservoir storage, providing sustained stream-
flow generation throughout spring and summer months. The combined effects of shifts in timing and magnitude 
in SWE and SWI have broad implications for (a) reservoir management given a greater offset between water 
supply and demand timing under PGW, and (b) future wildfire dynamics because large fires are already occurring 
in snowy mountain areas where SWE has declined, and snowmelt has shifted earlier in the year. These results and 
added insights suggest high resolution snow models that better capture mountain topography and model forcings 
that better capture convective and orographic processes may improve representation of seasonal snow accumula-
tion and melt dynamics, elevational variability in snow patterns, and changes in precipitation phase under future 
climate conditions. This is an important consideration for future regional to national scale hydrologic modeling 
applications in snow dominated areas. Additional work that connects high resolution SnowModel outputs to a 
hydrological model could benefit downstream coordinated water management by to evaluating the combined 
effects of widespread snow loss and earlier, flashier SWI.

Data Availability Statement
The data that support the findings of this study, including model input and output, are available in USGS Science-
Base at https://doi.org/10.5066/P9K0QUCN.
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