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Abstract Continued climate warming is reducing seasonal snowpacks in the western United States, where
>50% of historical water supplies were snowmelt-derived. In the Upper Colorado River Basin, declining snow
water equivalent (SWE) and altered surface water input (SWI, rainfall and snowmelt available to enter the
soil) timing and magnitude affect streamflow generation and water availability. To adapt effectively to future
conditions, we need to understand current spatiotemporal distributions of SWE and SWI and how they may
change in future decades. We developed 100-m SnowModel simulations for water years 2001-2013 and two
scenarios: control (CTL) and pseudo-global-warming (PGW). The PGW fraction of precipitation falling as
snow was lower relative to CTL, except for November—April at high elevations. PGW peak SWE was lower
for low (—45%) and mid elevations (—14%), while the date of peak SWE was uniformly earlier in the year for
all elevations (17-23 days). Currently unmonitored high elevation snow represented a greater fraction of total
PGW SWE. PGW peak daily SWI was higher for all elevations (30%—42%), while the dates of SWI peaks and
centroids were earlier in the year for all elevations under PGW. PGW displayed elevated winter SWI, lower
summer SWI, and changes in spring SWI timing were elevation-dependent. Although PGW peak SWI was
elevated and earlier compared to CTL, SWI was more evenly distributed throughout the year for PGW. These
simulated shifts in the timing and magnitude of SWE and SWTI have broad implications for water management
in dry, snow-dominated regions.

Plain Language Summary Snowpack water storage has historically functioned as a reliable
extension of manmade reservoir storage. Loss of this storage has consequences for water resource management,
ecological communities, and natural hazards including wildfire. We modeled snow accumulation and melt at
high spatial resolution in the Upper Colorado River Basin to assess patterns in the timing and magnitude of
snow storage and snowmelt for historical and future scenarios. We analyze these patterns in relation to existing
snow monitoring station coverage, and ask how this coverage may need to change in future decades to better
represent water availability. Our results indicate widespread future snow storage losses at lower elevations,

but limited change at higher elevations that will likely remain conducive to seasonal snow accumulation and
melt for decades to come. Peak snow storage and peak snowmelt occurred earlier for all elevations in future
years, with increased peak surface water input noted at all elevations. A greater fraction of future snow storage
will be in currently unmonitored high elevations. Projected elevation dependent changes from this study have
implications for other dry, snow dominated regions, and additional work is needed to evaluate combined effects
of widespread snow loss and earlier, flashier input on coordinated water management.

1. Introduction

Globally, snow loss is causing cascading impacts to soil storage, evapotranspiration, streamflow and groundwater
recharge; sediment transport and hazards; aquatic and terrestrial ecology; as well as human water use for public
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supply, irrigation, mining, hydropower, agriculture, and recreation (e.g., Huss et al., 2017). Continued global
warming is reducing seasonal snowpacks in the western United States (Mote et al., 2018), where a majority
of the region's water supply has historically been generated by snowmelt, especially in semi-arid basins (Li
et al., 2017). These changes are modifying the timing and magnitude of streamflow, with (a) mid-winter melt
occurring more frequently, (b) declines in peak snow water equivalent (SWE) (Musselman et al., 2021), and (c)
earlier streamflow timing in snowmelt driven areas (Dudley et al., 2017; Stewart et al., 2005). Across the western
United States, SWE declines of ~25% are expected by the middle of the 21st century, and seasonal snowpacks are
likely to be replaced by low-to-no snow conditions at low and mid elevations (Fyfe et al., 2017; Siirila-Woodburn
etal., 2021).

Snowmelt in the Upper Colorado River Basin (UCRB) generates as much as 92% of the streamflow for the larger
Colorado River Basin, which supports over 40 million people and irrigates 5.5 million acres across seven western
U.S. states (Butler et al., 2015; Lukas & Payton, 2020). Thus, better understanding the present spatiotemporal
distribution of SWE and the associated hydrologic response to global warming in this region is critical to prepare
for future adjustments to water resource management. Existing allocations between upper and lower basin states
may be unrealizable with continued snow loss and heightened interannual climatic variability, especially for
persistent drought periods (Adler, 2008; Udall & Overpeck, 2017; Woodhouse et al., 2006). Prior work in the
Colorado River Basin has shown annual streamflow to be most sensitive to warming during the warm season as
compared to other seasons for the last several decades (Ban & Lettenmaier, 2022), with annual discharge decreas-
ing 9.3% per °C of warming over the period 1913-2017 (Milly & Dunne, 2020). Other recent studies report that
increases of temperature of 1-2°C in the Colorado River Basin without changes in precipitation could result in
streamflow reductions of 10%-20% (Christensen et al., 2004; Christensen & Lettenmaier, 2007; McCabe and
Wolock, 2007, 2011). Projections using regional climate models indicate reduced, earlier peak SWE in the UCRB
(Rasmussen, Baker et al., 2011) and increases in streamflow for the 2030s followed by decreases for the 2080s
compared to present, with potential streamflow increases insufficient to meet growing water demand (Miller
etal., 2021).

Accurately characterizing mountain precipitation and SWE remains a key task for responding to projected
streamflow reductions and intensified droughts (Kim et al., 2021). This characterization has been a challenge
because most global climate models (GCMs) or mesoscale climate models produce simulations at coarse spatial
resolutions and are unable to represent complex orographic precipitation patterns and small-scale snow processes
that are important in mountainous regions such as the UCRB, resulting in substantial biases (Salzmann &
Mearns, 2012). Fine spatial scale is crucial for regional predictions of future hydroclimate (Ikeda et al., 2021;
Wrzesien & Pavelsky, 2020) to accurately represent the influence of topographic complexity on orographic
precipitation patterns and snow process dynamics (Liston, 2004; Lépez-Moreno et al., 2013; Musselman, Clark,
et al., 2017, Musselmann, Molotch, & Margulis et al., 2017; Rasmussen, Baker et al., 2011). In this study, we
extend prior mesoscale snow modeling work for areas of the western United States (e.g., Ikeda et al., 2021;
Li etal., 2017; Musselman, Clark, et al., 2017) to a finer resolution by using process-based snow modeling (Snow-
Model; Liston & Elder, 2006a) at 100-m (m) spatial resolution driven with fine-resolution convective-permitting
and orography-resolving Weather Research and Forecasting Model (WRF) simulations for a control (CTL) and
a pseudo-global-warming (PGW) scenario. The PGW method (Liu et al., 2017; Rasmussen, Baker et al., 2011,
Rasmussen, Liu et al., 2011; Sato et al., 2007; Schiér et al., 1996) is best used to ask the question, “what will
today's weather look like in a future climate state.” The difference between two 30-year monthly mean conditions
in a future (2071-2100) and current (1976-2005) are applied to reanalysis data used to drive the mesoscale model
that allows for historical events and patterns (i.e., extreme storm events, dry vs. wet seasons) to be directly stud-
ied in contrast to other methods that dynamically downscale from GCMs. The approach well characterizes the
thermodynamic aspects of climate change, but does not represent large-scale changes in atmospheric circulation.
However, sub-monthly mesoscale variability is well captured and allows for significant improvements in the
representation of precipitating systems in regions of complex terrain (Rasmussen, Baker et al., 2011, Rasmussen
& Liu, 2017).

This study optimally combines two cutting-edge models at a fine spatial scale that better captures the effects
of complex topography and elevation gradients on snow variability and snow processes than prior studies at
4-km or coarser resolutions, and it allows us to investigate how snowpack processes change with climate warm-
ing without introducing uncertainty inherent to other methods that include potential changes in storm tracks.
Additionally, in this study we analyze surface water input (SWI), which is the sum of rainfall and snowmelt
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available to enter the soil, to characterize the effects of a changing snowpack on the hydrologic cycle. Prior stud-
ies at plot and catchment scale have demonstrated linkages between SWI and observed and modeled streamflow
(Hammond et al., 2019; Kiewiet et al., 2022; Kormos et al., 2014), and the use of SWI in this study enables
linking snow changes to hydrologic effects not fully captured in prior studies using metrics including snowfall
fraction (Berghuijs et al., 2014) and snowmelt rate (Barnhart et al., 2016).

With the aim to reduce uncertainty in present and future spatiotemporal distributions of SWE and SWI, we ask
our primary study question (a) how will SWE change under a future warmer climate by elevation, and how might
this affect future water availability via changes to the timing and magnitude of SWI? (Sections 3.3, 3.4, 4.1).
Using PGW as an indicator of potential future conditions associated with the thermodynamic aspects of climate
change, we hypothesize future SWI will occur earlier and at lower magnitude for mid to low elevations coincident
with decreases in SWE (Barnhart et al., 2016; Musselmann, Molotch, & Margulis et al., 2017), but peak SWE
may increase at times for high elevations where precipitation is expected to increase; temperatures during late
fall, winter and early spring will still be conducive for snowfall (e.g., Musselman, Clark, et al., 2017). Despite
similar or elevated SWE at high elevations, we hypothesize the timing of future SWI will be earlier in the year
than for historical estimates (Musselmann, Molotch, & Margulis et al., 2017). To place these results in context of
current snow monitoring locations following in depth analysis of the present and future distributions of SWE and
SWI, we ask a secondary study question (b) how well do current snow observation stations represent the spatial
distribution of SWE and SWI, and how might these networks need to change to continue to provide predictive
information for future water availability? (Section 4.2). We hypothesize future snowpacks will be more limited to
higher elevations than at present (Ikeda et al., 2021), and that low to mid elevations will provide a smaller snow-
melt contribution to streamflow despite substantial present-day snowmelt contribution given their large spatial
footprint (Hammond et al., 2018; Harrison et al., 2021).

2. Methods

To answer our study questions, we selected the Colorado portion of the UCRB (Section 2.1), implemented CTL
and PGW SnowModel simulations (Section 2.2), and performed a multi-source model evaluation using station
and remotely sensed data (Section 2.3). We then aggregated model inputs and outputs to elevation bands and
daily, monthly, and annual timesteps, and calculated several annual metrics to describe differences in SWE and
SWI between CTL and PGW scenarios (Section 2.4).

2.1. Study Area

The model domain was a 311 x 300 km area in Colorado, United States, encompassing the headwaters of Colo-
rado and Gunnison River Basin portions of the UCRB (Figure 1). Elevations within the domain ranged from
1,313 to 4,385 m (Figure 1). The model domain is a snow-dominated mountainous region with deep persistent
snowpacks and high runoff generation (Figure 1; Hammond et al., 2018; Miller et al., 2016); seasonal snowpacks
in the region serve as the primary source of annual streamflow with snowmelt contributing to an estimated 71%
of total UCRB runoff (Li et al., 2017).

2.2. Model Description and Simulations

To simulate detailed snow evolution processes for both current and future climate conditions, we utilized Snow-
Model, a spatially distributed physics-based snow evolution modeling system (Liston & Elder, 2006a; Liston
et al., 2020), forced with WRF convection-permitting and orography-resolving regional climate simulations on a
4-km grid resolution (Liu et al., 2017; Rasmussen & Liu, 2017). WRF climate simulations provided the atmos-
pheric forcing conditions to drive SnowModel in both a current and future climate scenario. A pair of continuous
13-water-year (2001-2013) WRF model simulations was used: (a) a current climate simulation CTL forced using
ERA-Interim reanalysis, and (b) a future climate simulation using the PGW method. The PGW simulation uses
the ERA-Interim reanalysis for the same period as (a) and adds an ensemble mean climate delta (increase in
radiative forcing) from 100 years in the future for the most extreme Representative Concentration Pathway (RCP)
8.5 scenario. The two-dimensional 4-km grid spacing hourly WRF simulation output (Rasmussen & Liu, 2017)
for both CTL and PGW scenarios were subset to our study area model domain and used as atmospheric forcing
for running SnowModel.
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Figure 1. Snow modeling study area with (a) elevation at 100-m modeling resolution and existing snow telemetry stations and (b) Moderate Resolution Imaging
Spectroradiometer snow persistence (SP, the % of time snow is present from 1 January to 3 July) at 500-m resolution. Inset in (a) shows elevation distribution, inset in
(b) shows cumulative fraction of the study area. (c) Location of the snow modeling domain study area and the Upper Colorado River Basin in the United States. Black
and orange contours in (a, b) and the vertical lines of the same color in the insets of (a and b) separate the domain into three elevational categories that are used for
synthesizing patterns throughout our analyses: “high,” >3,300 m; “mid,” 2,300 m < elevation < 3,300 m; “low,” 2,300 m.

SnowModel simulations were run for both CTL and PGW scenarios with a three-hour time step and 100-m spatial
grid resolution (9.32 million grid cells across the model domain; Figure 1; Sexstone et al., 2022). Elevation and
land cover data (30-m spatial resolution) were provided by the U.S. Geological Survey (USGS) National Eleva-
tion Data set (U.S. Geological Survey, 2020) and North American Land Change Monitoring System (Canada
Centre for Remote Sensing, 2020) and were resampled to the 100-m spatial grid resolution using average resa-
mpling and mode resampling (GDAL/OGR, 2022), respectively. Hourly WRF precipitation, air temperature,
relative humidity, and wind speed and direction data were aggregated to three-hour values to correspond with the
model simulation time step. Three-hour WRF forcing data along with the mean elevation of each 4-km WRF grid
cell were used by MicroMet (Liston & Elder, 2006b), a high-resolution meteorological distribution submodel of
SnowModel, to downscale and create the 100-m spatial resolution meteorological forcing data required to run
SnowModel. The Dai (2008) rain-snow precipitation phase fraction parameterization (Liston et al., 2020) was
used to calculate a rain-snow fraction of precipitation inputs for this study. Other submodels that make up the
SnowModel modeling system were used to simulate spatially distributed snowpack evolution across the study
area including: EnBal (Liston, 1995), which computes surface energy exchanges between the snow and atmos-
phere; SnowPack (Liston & Hall, 1995), which simulates the seasonal evolution of snow depth and SWE; and
SnowTran-3D (Liston & Sturm, 1998), a three-dimension model that simulates snow redistribution by wind
over topographically variable terrain. CTL and PGW SnowModel simulations include snow sublimation from
the surface, canopy, and blowing snow (Sexstone et al., 2018). SnowModel simulation outputs (100-m spatial
resolution) of SWE, SWI, snowmelt, precipitation, fraction of precipitation falling as snow, and air temperature
were aggregated from a three-hour to a daily time step and used in this study.

2.3. Model Evaluation

SnowModel simulations for the CTL scenario were evaluated using two independent data streams, snow telemetry
(SNOTEL) station observations and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite obser-
vations. Simulated precipitation and SWE values were evaluated using SNOTEL station observations of precipi-
tation and SWE at 71 sites ranging in elevation from 2,591 to 3,523 m that included at least three complete water
years of observations during the study period (Table S1 in Supporting Information S1). Simulated snow-covered
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area and snow persistence (SP) were evaluated using daily cloud gap filled MODIS observations, and derived
SP grids. A grid cell and day in the model output was considered to be snow covered if SWE >10 mm; and SP
was calculated as the fraction of time snow was present from 1 January to 3 July. Evaluation using MODIS data
was completed for all areas of the domain in the seasonal snow zone, where SP is greater than 50% (Figure S3
in Supporting Information S1). Prior work has evaluated the WRF forcing (Rasmussen & Liu, 2017) used in our
model simulations, and the model estimates reliably reproduced the annual, seasonal, and sub-seasonal precip-
itation and surface temperature climatology in mountain regions of the western United States (Liu et al., 2017,
Rasmussen, Baker et al., 2011). Likewise, SnowModel has been rigorously evaluated and shown to perform
well in seasonally snow-covered environments similar to the study area (e.g., Greene et al., 1999; Hiemstra
et al., 2006; Liston & Elder, 2006a, 2006b; Liston & Hiemstra, 2008; Prasad et al., 2001; Sproles et al., 2013;
Sexstone et al., 2018; Sexstone, Penn et al., 2020). For details on the methods used to evaluate the SnowModel
simulations used in this study, please refer to Text S1 in Supporting Information S1.

2.4. Analysis of Model Inputs and Outputs

We examined the precipitation, temperature, and fraction of precipitation falling as snow on monthly, annual, and
mean annual timescales across 13 years of simulation. We further examined SWE and SWI at daily resolution.
We focus many of our analyses on variability in mean annual SWE and SWI by elevation, as prior studies have
used coarser spatial resolutions less able to resolve mountain topography and elevational snow variability (Ikeda
etal., 2021; Musselmann, Molotch, & Margulis et al., 2017). Because the 13-year window is too short for evaluat-
ing temporal variability and trends, we evaluated 13-year average differences between CTL and PGW scenarios.
We aggregated daily SWE and SWI to 100-m elevation bands (Figure S1 in Supporting Information S1) using
the exactextractr (Baston, 2020) R package to obtain daily area-weighted averages for each unit. Spatial units
across the domain were classified into 31,100-m elevation bands ranging from 1,300 to 4,300 m. For mean annual
scale analyses, the mean of annual totals (e.g., precipitation) or the mean of annual means (e.g., temperature)
were computed. For analyses plotting results by elevation, we computed the median value of a given metric for
all spatial units falling within each 100-m elevation band. For example, when displaying the CTL peak SWE for
3,000 m in Figure 3, we first calculated the peak SWE for each simulation year (2001-2013) and each spatial
unit, then took the mean of all simulation years for that unit, and finally took the median value of peak SWE for
all spatial units with the 100-m elevation classification of 3,000 m.

We used a threshold in rainfal/SWE to differentiate between snowmelt dominated input and mixed input because
without a threshold, snowmelt events with an insignificant amount of rain would be categorized as mixed. A 10%
threshold in rainfall/SWE, where input with rainfal/SWE >= 10% is mixed input and rainfal/SWE < 10% is
snowmelt input, was adopted here and is functionally similar to those used in other rain on snow studies (Cohen
et al., 2015; Guan et al., 2016; Lundquist et al., 2008). We calculated six annual SWE and SWI metrics for each
spatial unit (Figure S1 in Supporting Information S1) using median daily values of model outputs as described
above. Our focus is on SWI, which includes rainfall and snowmelt, because it is more indicative of hydrologic
response in snow dominated areas than precipitation alone. Annual metrics calculated were: (a) peak SWI, which
represents peak daily SWI, (b) peak SWE, (c) peak SWI DOWY, the day of the water year on which the peak
SWI occurs, (d) peak SWE DOWY, the day of the water year when peak SWE occurs, () SWI50 DOWY, the day
of the water year on which 50% of the annual SWI has occurred, and (f) input seasonality (S), which is similar
to the precipitation seasonality metric (Dingman, 2002; Markham, 1970) but calculated with SWI time series
rather than precipitation (Barnhart et al., 2022). IS is an index of how much mean annual input occurs within
a concentrated period or is equally distributed throughout the year and is calculated using monthly SWI totals.

12
_1 A
IS = A<;‘M, > ) 6)

where:
A is the annual sum of SWI.
M, is the monthly sum of SWL

Finally, we computed the fraction of SWI sourced from snowmelt (f,

snow-

) and mixed input (f

mix

) for each day using
summed total values of SWI for each spatial unit (rather than mean values) separated into three categories: snowmelt
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input (rainfal/SWE < 0.1 and SWE > 0), mixed input (rainfal/SWE > 0.1 and SWE > 0), and rainfall input (rain-
fall > 0 and SWE = 0), and these values were then totaled for each spatial unit to calculate £, and f,

Snow mi

o snowmelt input )
O 7\ snowmelt input + rainfall input + mixed input

ix as:

mixed input
fmix = < ) (3)

snowmelt input + rainfall input + mixed input

In addition to assessing SWI changes by elevation between CTL and PGW scenarios using annual scale metrics,
we implemented two subsequent analyses to examine domain-wide impacts to total SWI. To better understand
patterns and changes in total study area mean annual SWI by elevation and time of the year, we calculated the
fraction of total study area mean annual SWI generated by each elevation band for each month for CTL and
PGW separately. To investigate snowmelt contributions to SWI, and how they differ between PGW and CTL, we
mapped the mean annual fraction of SWI contributed from snowmelt and calculated the mean monthly snowmelt
contributed SWI for both scenarios, and how this changed between scenarios. Finally, we investigated differ-
ences between mean annual change and annual change within the same scenario and between scenarios for two
simulation years (2011, greatest peak SWE for CTL, and 2012, lowest peak SWE for CTL) that highlight high
interannual variability of snow and SWI.

In reporting the results of our analyses, we use three elevation categories to synthesize patterns in SWE and SWI
change by elevation: “high,” >3,300 m; “mid,” 2,300 m < elevation < 3,300 m; “low,” <2,300 m. These elevation
categories were chosen because they broadly reflect the satellite-derived boundaries of the present intermit-
tent and seasonal snow zones in the study region, zones that reflect similar snow patterns (Moore et al., 2015)
and similar patterns of soil moisture and streamflow response to snowmelt (Hammond et al., 2018; Harrison
et al., 2021). These elevation categories are also consistent with regional regression equation elevation ranges for
streamflow prediction in ungaged areas (Capesius & Stephens, 2009; Eurich et al., 2021).

3. Results

To examine differences in SWE and SWI between CTL and PGW scenarios, we first evaluated performance of
SnowModel in the Colorado portion of the UCRB for the CTL scenario (Section 3.1) and assessed differences
in the meteorological forcing between CTL and PGW (Section 3.2). We then quantified differences in SWE
(Section 3.3) and SWI (Section 3.4) between CTL and PGW using daily model output and annual-scale synthesis
metrics for elevation bands across the study area.

3.1. Model Evaluation

We evaluated simulated SnowModel SWE for the historic (water years 2001-2013) CTL scenario using SNOTEL
stations observations (Figure S2, Table S1 in Supporting Information S1) and simulated SnowModel snow
covered area using MODIS observed snow covered area for water years 2001-2005. Comparison of simulated
SWE with all available observations from 71 SNOTEL stations within the study domain showed a root mean
square error (RMSE) of 98 mm and Nash-Sutcliffe efficiency (NSE) of 0.72 for periods when both observed and
simulated SWE were not equal to zero. NSE performance statistics computed individually for simulation results
at each SNOTEL station (Table S1 in Supporting Information S1) show 30% of stations displayed a very good
performance rating (0.75 < NSE < 1.00), 25% of stations had good performance (0.65 < NSE < 0.75), 17% of
stations were satisfactory (0.50 < NSE < 0.65), and 28% of stations were unsatisfactory (NSE < 0.50) accord-
ing to criteria established in Moriasi et al. (2007). Simulated SWE at SNOTEL stations was biased low overall
(PBias —6.7%, mean error —14 mm) compared to observations, following a low bias in simulated precipitation
(i.e., WREF precipitation downscaled to a 100 m spatial resolution by SnowModel) relative to observations (PBias
—6.5%, mean error —27 mm). Simulated precipitation exhibited an RMSE of 97 mm and NSE of 0.88 when
compared to SNOTEL observations. The SnowModel snow covered area daily time series by elevation band
showed agreement with remotely sensed values with a median study area NSE of 0.33 and PBias of 1.9% for areas
with seasonal snowpack (SP > 50%). SnowModel differed most from remotely sensed estimates during abrupt
accumulation and melt events, but showed close alignment for accumulation and melt periods (Figure S3a—d
in Supporting Information S1). The NSE of modeled and remotely sensed snow-covered area values for 100-m
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Figure 2. Mean monthly (a) precipitation, (b) temperature, (c) snowfall fraction of precipitation, and (d) surface water input difference between pseudo-global-warming
(PGW) and control (CTL) scenarios for 100-m elevation bands across the study area. In all cases values presented are PGW minus CTL.

elevation band units across the study area, performance was generally best for mid and high elevation areas in the
seasonal snow zone (Figure S3e in Supporting Information S1), with poorer performance in low elevation, inter-
mittently snowy areas. Finally, in comparison to existing SWE products at 4-km and 1-km spatial resolutions,
the 100-m simulations for current climate conditions used in this paper better matched the spatial variability of
near peak SWE for the UCRB (Figures S17, S18 in Supporting Information S1). These results suggest the forcing
data and level of performance of SnowModel is adequate for our analyses tracking snow accumulation and melt.

3.2. Differences in Meteorological Forcings Between Scenarios

The PGW scenario was warmer and wetter than the CTL scenario and exhibited reductions to the fraction of
precipitation falling as snow. Mean monthly PGW temperatures for all months ranged from 4.9 to 5.6°C warmer
than for CTL for elevation bands across the domain. We observed the greatest positive changes in temperature in
the eastern, high elevation region of the study domain, with the greatest changes in fall (Figure 2b), followed by
spring. In these seasons, high elevations exhibited the greatest positive changes, with changes in October up to
6.3°C for high elevations. The smallest long-term changes occurred during winter on the order of 4°C.

Following the thermodynamic relation between temperature and specific humidity, mean monthly PGW precipi-
tation tended to be higher, by approximately 146 mm/y relative to CTL across all elevations. The greatest precip-
itation changes occurred for high elevations in the central and northeast parts of the study domain. Precipitation
was higher compared with CTL in all seasons except spring (Figure 2a). The greatest positive precipitation
changes occurred during winter at high elevations, resulting in increased snowfall, and the greatest negative
changes occurred during spring months at high elevations.

The fraction of precipitation delivered as snow was reduced by as much as 40% between CTL and PGW, with
every 100-m elevation band indicating lower snowfall fraction during at least one month (Figure 2c). In cold
season months between November and April, high elevations indicated little change in the fraction of precipita-
tion delivered as snow, whereas the low elevations indicated losses of up to 40%, especially in December through
February. High elevations indicated the greatest losses in proportion of precipitation delivered as snow during
May and October, likely owing to positive changes in temperature projected during those months (e.g., Klos
et al., 2014; Scalzitti et al., 2016a, 2016b).
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3.3. Differences in SWE and Snowmelt Between Scenarios
3.3.1. High Elevations

We evaluated changes in the timing and magnitude of SWE between the CTL and PGW scenarios using annual
metrics that synthesize relevant shifts in daily time series of SWE. The greatest mean annual peak SWE for both
scenarios occurred at the highest elevations (Figure 3), with the PGW scenario exhibiting, on average, peak SWE
values that were only 3% lower (13 mm) relative to CTL. Despite higher mean annual precipitation for PGW at
all elevations during most of the snow accumulation season (Figure 2), peak SWE was only higher over a small,
high elevation area in the PGW scenario relative to CTL (Figure 3, Figure S13 in Supporting Information S1).
The date of peak SWE was latest at the high elevations for CTL and earlier at high elevations in the PGW
scenario (—17 days, Table S4 in Supporting Information S1). Additional comparisons using mean daily values
(Figure 4) and mean monthly values (Table S2 in Supporting Information S1) confirmed SWE magnitude and
timing changes observed using annual metrics. The months where high-elevation SWE differed most between the
scenarios were May—July (=44 to —191 mm, Table S2 in Supporting Information S1) and October—December
(=21 to —34 mm). On average, during these months, the PGW scenario exhibited lower SWE than the CTL
scenario. High elevations showed elevated February to April SWE from CTL to PGW (+1 to +13 mm, Table
S2 in Supporting Information S1), with patterns in average monthly snowmelt matching the patterns observed
for SWE change between CTL and PGW. Notably, while snow did not melt at high elevations during the CTL
scenario for the months December to February, small amounts of snowmelt were generated for these months in
the PGW scenario (Table S2 in Supporting Information S1).

3.3.2. Mid Elevations

When PGW was compared with CTL, pronounced reductions in peak SWE occurred at mid elevations (—26 mm,
—14%, Table S4 in Supporting Information S1, Figure 3). The date of peak SWE was earlier during the water
year (—23 days, Table S4 in Supporting Information S1), a larger temporal shift than observed for high or low
elevations. Changes in mean monthly values revealed that mid elevations displayed the largest reductions in SWE
for April (—=53 mm, Figure S15 in Supporting Information S1) and May (—51 mm, Table S2 in Supporting Infor-
mation S1), and exhibited no change for the months July—September when snow was absent in both scenarios.
Monthly mean snowmelt was higher for the mid elevations during winter months, as earlier peak SWE corre-
sponded with greater winter melt and reduced spring and summer snowmelt (Table S2, Figure S8 in Supporting
Information S1).

3.3.3. Low Elevations

Low elevations displayed the greatest percentage reductions in peak SWE for the PGW scenario compared to
CTL (—30 mm, —45%, Table S4 in Supporting Information S1) and when comparing low elevation reductions
to those at mid and high elevations. The date of peak SWE occurred 21 days earlier, a similar advancement to
the earlier peak SWE observed for mid elevations. Low elevations displayed reductions in mean monthly SWE
(—60% to —100%, Table S2 in Supporting Information S1) for all months except for July and August which lacked
SWE in both scenarios. These reductions were further highlighted by patterns displayed using mean daily SWE
values for the two scenarios (Figure 4). Although all elevations experienced earlier peak SWE with greater snow-
melt earlier in the year, low elevations were unique in displaying a nearly complete loss of SWE and subsequently
snowmelt in the PGW scenario (Figure 4, Figure S8, Table S2 in Supporting Information S1).

3.4. Differences in Surface Water Input Between Scenarios
3.4.1. High Elevations

Because we observed differences in SWE and snowmelt between the two scenarios, we then analyzed differences
in SWI between CTL and PGW scenarios by elevation. Mean annual peak daily SWI was highest in the high
elevation band for CTL (Figure 3), with higher peak daily SWI in the PGW scenario compared to CTL (+30%,
+12 mm/d, Table S4 in Supporting Information S1). The date of peak daily SWI for high elevations occurred
14 days earlier in the PGW scenario. The IS metric, which indicates whether input is focused primarily within
a few months or is evenly distributed throughout the year, showed that the most temporally concentrated input
was at high elevations during CTL. That input became less concentrated for PGW at the same elevations (—13%,
Table S4 in Supporting Information S1). For the CTL scenario, the mean annual centroid date of SWI was earlier
in the western part of the domain, and later at high elevations and in the eastern part of the study area. The
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Figure 4. Mean annual daily snow water equivalent (SWE, top) and mean annual daily surface water input (SWI, bottom) by scenario (control - CTL, pseudo-global-
warming - PGW) and elevation band. A 7-day moving mean was applied for better visualization between bands, but this compresses peak daily SWI. SWE and SWI
patterns are separated into three elevational categories: high, >3,300 m; mid, 2,300 m < elevation < 3,300 m; low, <2,300 m. Figure S7 in Supporting Information S1
displays greater details in daily SWE and SWI for the low elevation category.

centroid date of mean annual SWI was earlier for PGW than for CTL for all elevations (Table S4, Figure S14 in
Supporting Information S1).

Mean monthly SWI was higher in the PGW scenario than the CTL scenario for all months except for June and July
(Table S3 in Supporting Information S1). The magnitude of the difference was greatest in April and May, with the
negative differences in June and July nearly perfectly offsetting the positive differences in April and May from a
mass balance perspective. Changes observed in mean monthly SWI were further evidenced by patterns in mean
daily values. For CTL, high elevations experienced long and continuous periods of elevated snowmelt-derived
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are separated into three elevational categories: high, >3,300 m; mid, 2,300 m < elevation < 3,300 m; low, <2,300 m.

SWI in May and June (Figures 4 and 5), whereas PGW SWI at high elevations displayed higher, concentrated
peaks earlier in the year. From here forward, we use the term “flashier” to represent more rapidly occurring and
higher peak SWI observed for PGW as compared to CTL. At high elevations, snowmelt contributions to SWI
for CTL were greatest in April and May (Figure 5), with PGW snowmelt contributions to SWI generally higher
earlier in the spring and lower later in spring and summer.

3.4.2. Mid Elevations

Peak daily SWI was similarly greater for PGW at mid elevations relative to CTL as compared to high elevations
(+34%, +10 mm/d, Table S4 in Supporting Information S1). However, the date of peak daily SWI was 20 days
earlier in the year at mid elevations, a greater advance than observed for high elevations. IS declined the most
at mid and low elevations (—18%, Table S4 in Supporting Information S1). Mean monthly total SWI values for
mid elevations revealed higher values in monthly SWI for October—April, similar to what was observed for high
elevations, but with reductions observed for May, June, July, and September. Elevated SWI for March and April
in mid elevations was offset by reductions to May and June SWI. Assessing differences in CTL versus PGW April
SWI, mid elevations displayed the greatest reductions (Figure S15 in Supporting Information S1). Similar to the
PGW-CTL differences observed in mean daily values for high elevations, mid elevations displayed elevated daily
SWI (Figure 4) and earlier daily snowmelt contributions to SWI (Figure 5). This period was followed by reduc-
tions in SWI and snowmelt contributions, which occurred earlier in the year than at high elevations. While peak
daily SWI for high elevations consistently displayed higher values for PGW, some mid elevation bands displayed
lower and longer elevated periods potentially due to higher SWI earlier in the season (Figures 4 and 5).

3.4.3. Low Elevations

At low elevations, peak daily SWI was higher for PGW, and with a greater percent difference than for mid and
high elevations (+42%, +10 mm/d, Table S4 in Supporting Information S1). The date of peak daily SWI occurred
23 days earlier in the year and the centroid date of SWI occurred 30 days earlier in the year. Both metrics indicate
greater differences between scenarios than at mid or high elevations. At low elevations, the difference in mean
monthly total SWI values between the two scenarios was larger than observed at the mid and high elevations, with
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Figure 6. The fraction of total mean annual study area surface water input (SWI) generated by each elevation category for each month for control (CTL) and
pseudo-global-warming (PGW) scenarios. Elevation categories as follows: high, >3,300 m; mid, 2,300 m < elevation < 3,300 m; low, <2,300 m.

SWI lower in the PGW scenario compared with the CTL scenario. We observed lower SWI in the PGW scenario
relative to the CTL scenario in October, March, April, May, July, and August (Table S3 in Supporting Infor-
mation S1), with the greatest reductions for April and May. Changes in mean daily SWI reinforced the patterns
observed at monthly scale. While mid and high elevations showed (a) larger magnitude shifts in late winter and
spring SWI (Figure 4) and (b) elevated snowmelt contributions to SWI earlier in the year and reduced contribu-
tions later in the year (Figure 5), low elevations displayed more muted changes both to the change in daily SWI
as well as the change in daily snowmelt contribution to SWI.

3.4.4. Differences Between Control and Pseudo-Global-Warming Scenarios for High and Low Snow
Years

Peak SWE and IS in both scenarios differed greatly between 2011 and 2012 (Figure 3), with substantially higher
IS, peak SWE and peak SWI during the high snow year (2011) than the low snow year (2012) for CTL and PGW.
The timing of these metrics also varied greatly, with peak SWE timing occurring considerably earlier for the
low snow year, especially at high elevations. Peak daily SWI for the high snow year for PGW showed greater
differences between PGW and CTL values whereas peak SWI was more similar between mean annual and low
snow year values for the two scenarios. Peak daily SWI appeared to change the most for PGW high snow years
as compared to CTL values. The centroid of SWI (SWI50) for the low snow year for PGW showed much earlier
timing as compared to CTL values for the same year.

3.4.5. Combined High, Mid and Low Surface Water Input Changes and Basin-Wide Response

Total monthly contributions to study area SWI were lowest for both CTL and PGW during the months of Decem-
ber, January, and February, with spring and summer months exhibiting the highest contributions (Figure 6).
However, June contributions for PGW were substantially lower than other spring and summer months, and substan-
tially lower than for CTL, corresponding with lower precipitation for PGW in the preceding month (Figure 2a).
Subtracting CTL monthly SWI contributions from PGW monthly contributions revealed higher October to March
contributions to total study area SWI for PGW, and lower monthly contributions for June—September for all eleva-
tions as compared to CTL. For the months March—May, the direction of monthly contribution changes between
PGW and CTL depended on elevation. In March, low elevations showed lower PGW monthly contributions to
total annual study area SWI than for CTL, whereas mid and high elevations showed higher values. In April at
low and mid elevations, the PGW scenario contributed less to total mean annual study area SWI than the CTL
scenario. However, at high elevations, the PGW scenario contributed more to total mean annual study area SWI
than the CTL scenario. In May, mid elevations showed substantially lower PGW contributions than during CTL,
while high elevations had greater PGW monthly contributions to total annual study area SWI than CTL.

Though snowmelt-derived SWI showed similar spatial distributions across the study area for both scenarios
(Figures 7a and 7b), less of the total SWI in the PGW scenario came from snowmelt (Figure 7c). Elevation
was a major CTL on the percent differences in mean monthly snowmelt-derived SWI between PGW and CTL
(Figure 7d, Table S3 in Supporting Information S1), with high elevations showing higher snowmelt-derived SWI
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Figure 7. Snowmelt contributions to total water year surface water input (SWI) for control (CTL) (a) pseudo-global-warming (PGW) (b) and PGW minus CTL (c),
and the mean monthly PGW minus mean monthly CTL snowmelt contributions to total SWI by elevation range (d). Elevation categories in (d) are as follows: high,
>3,300 m; mid, 2,300 m < elevation < 3,300 m; low, <2,300 m. The gray contour in (a,b, and c) is for 2,300 m and separates the low and mid elevation category, while
the black contour is for 3,300 m and separates the mid and high elevation category.

values for PGW relative to CTL in fall and spring months, and reductions in snowmelt-derived SWI relative to
CTL for summer months. Mid elevations showed higher contributions in fall, winter, and early spring months for
PGW as compared to CTL, and reductions during late spring and summer months. Low elevations showed higher
values for December and January, declines for October, November, February, March, April, and May, with no
change for June to September.

4. Discussion

The results of high spatial resolution SnowModel simulations used in this study revealed novel elevational patterns
of changes to SWE and SWI under continued global warming. Simulations indicate that high elevation SWE is
retained under PGW (Figures 3 and 4, Section 4.1.1). Peak daily SWI was earlier and elevated under PGW, but
SWI was also more evenly distributed throughout the year (Figures 3 and 4, Section 4.1.2). PGW led to altered
timing, but not complete loss, of snowmelt contributions to SWI (Figures 5-7), with similar annual elevation
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